Mallard duckling survival and habitat selection in the Canadian prairie pothole region / Pauline M. Bloom.
Material type: TextPublication details: Saskatoon : University of Saskatchewan, 2010.Description: ix, 71 leaves : ill., maps ; 28 cmSubject(s): Online resources: Dissertation note: Thesis (M.Sc.) -- University of Saskatchewan, 2010. Summary: Like life-history theory, wildlife management decisions are typically predicted on trade-offs between benefits associated with investing resources to achieve higher reproductive or survival rates versus costs or risks of achieving these goals. On the Canadian prairies, most waterfowl conservation resources are directed to policies and programs that seek to increase duck nesting success. Limited attention has focused on post-hatching life-cycle stages, yet, despite considerable recent work on duckling survival rates many uncertainties remain concern how abiotic and biotic factors affect duckling survival rates.The role of upland habitat characteristics may be important but has received limited attention. I evaluated hypothesized sources of variation in duckling survival for 617 mallard (Anas platyrhynchos)broods on 27 Canadian prairie-parkland sites, with emphasis on assessing effects of managed and remnant natural upland habitats. I contrasted suites of a priori and post hoc exploratory models that incorporated effects of landscape, weather, female and brood-related variables to explain variation in duckling survival rates. Survival was lower for ducklings that used areas with high proportions of semi-permanent wetlands, as well as for broods that travelled farther overland. Exploratory analyses revealed further that survival of ducklings was negatively related to the amount of managed hayland. In contrast, duckling survival was positively associated with the amount managed grassland. There was no evidence of trade-offs between benefits of managing habitat to enhance duck nesting success versus costs in terms of lower subsequent duckling survival. I also addressed unresolved questions about how birds balance costs and benefits of selecting habitats by determining the survival consequences of habitat choices made during brood-rearing. In theory, fitness should be higher in preferred habitats, but this assumption is rarely tested. Fitness consequences (i.e., duckling survival) of habitat selection patterns were determined at landscape and local scales using logistic regression and information-theoretic model selection techniques.Best-approximating landscape-level models indicated that mallard females selected brood-rearing areas with a high proportion of wetland and perennial upland habitats, but duckling survival was not related to habitat selection patterns at this scale. At finer spatial scales,females selected brood-rearing areas with high proportions of wetland habitats, but, contrary to expectation, duckling survival was lower when females raised their broods in these areas. Females avoided areas with abundant perennial cover and wetlands with little vegetative cover and, consistent with prediction, duckling survival was higher when females selected areas with low perennial cover. Thus, females did not consistently select brood-rearing habitats that conferred the highest fitness benefits. Rather, the relationship between habitat selection and duckling survival depended on spatial scale and habitats considered.Item type | Current library | Collection | Call number | Status | Date due | Barcode |
---|---|---|---|---|---|---|
Electronic Theses | IWWR Supported Research | Non-fiction | BLO (Browse shelf(Opens below)) | Available | 15342 |
Browsing IWWR Supported Research shelves Close shelf browser (Hides shelf browser)
Thesis (M.Sc.) -- University of Saskatchewan, 2010.
Includes bibliographical references (leaves 62-68).
Like life-history theory, wildlife management decisions are typically predicted on trade-offs between benefits associated with investing resources to achieve higher reproductive or survival rates versus costs or risks of achieving these goals. On the Canadian prairies, most waterfowl conservation resources are directed to policies and programs that seek to increase duck nesting success. Limited attention has focused on post-hatching life-cycle stages, yet, despite considerable recent work on duckling survival rates many uncertainties remain concern how abiotic and biotic factors affect duckling survival rates.The role of upland habitat characteristics may be important but has received limited attention. I evaluated hypothesized sources of variation in duckling survival for 617 mallard (Anas platyrhynchos)broods on 27 Canadian prairie-parkland sites, with emphasis on assessing effects of managed and remnant natural upland habitats. I contrasted suites of a priori and post hoc exploratory models that incorporated effects of landscape, weather, female and brood-related variables to explain variation in duckling survival rates. Survival was lower for ducklings that used areas with high proportions of semi-permanent wetlands, as well as for broods that travelled farther overland. Exploratory analyses revealed further that survival of ducklings was negatively related to the amount of managed hayland. In contrast, duckling survival was positively associated with the amount managed grassland. There was no evidence of trade-offs between benefits of managing habitat to enhance duck nesting success versus costs in terms of lower subsequent duckling survival. I also addressed unresolved questions about how birds balance costs and benefits of selecting habitats by determining the survival consequences of habitat choices made during brood-rearing. In theory, fitness should be higher in preferred habitats, but this assumption is rarely tested. Fitness consequences (i.e., duckling survival) of habitat selection patterns were determined at landscape and local scales using logistic regression and information-theoretic model selection techniques.Best-approximating landscape-level models indicated that mallard females selected brood-rearing areas with a high proportion of wetland and perennial upland habitats, but duckling survival was not related to habitat selection patterns at this scale. At finer spatial scales,females selected brood-rearing areas with high proportions of wetland habitats, but, contrary to expectation, duckling survival was lower when females raised their broods in these areas. Females avoided areas with abundant perennial cover and wetlands with little vegetative cover and, consistent with prediction, duckling survival was higher when females selected areas with low perennial cover. Thus, females did not consistently select brood-rearing habitats that conferred the highest fitness benefits. Rather, the relationship between habitat selection and duckling survival depended on spatial scale and habitats considered.